8 research outputs found

    Hardware Implementations of Video Watermarking

    Get PDF
    Various digital watermarking (WM) techniques for still imaging have been studied in the last several years. Recently, many new WM schemes have been proposed for other types of digital multimedia data, such as text, audio and video. This paper presents a brief overview of existing digital video WM. We classify WM techniques and discuss the properties of video WM. Since each WM application has its own specific requirements, WM design must take the intended application into consideration. Video WM applications are also discussed in the paper. The features of video WM implementations in software and hardware and their differences are presented through the description of four examples of existing work

    VLSI Watermark Implementations and Applications

    Get PDF
    This paper presents an up to date review of digital watermarking (WM) from a VLSI designer point of view. The reader is introduced to basic principles and terms in the field of image watermarking. It goes through a brief survey on WM theory, laying out common classification criterions and discussing important design considerations and trade-offs. Elementary WM properties such as robustness, computational complexity and their influence on image quality are discussed. Common attacks and testing benchmarks are also briefly mentioned. It is shown that WM design must take the intended application into account. The difference between software and hardware implementations is explained through the introduction of a general scheme of a WM system and two examples from previous works. A versatile methodology to aid in a reliable and modular design process is suggested. Relating to mixed-signal VLSI design and testing, the proposed methodology allows an efficient development of a CMOS image sensor with WM capabilities

    On-chip fully reconfigurable Artificial Neural Network in 16 nm FinFET for Positron Emission Tomography

    Full text link
    Smarty is a fully-reconfigurable on-chip feed-forward artificial neural network (ANN) with ten integrated time-to-digital converters (TDCs) designed in a 16 nm FinFET CMOS technology node. The integration of TDCs together with an ANN aims to reduce system complexity and minimize data throughput requirements in positron emission tomography (PET) applications. The TDCs have an average LSB of 53.5 ps. The ANN is fully reconfigurable, the user being able to change its topology as desired within a set of constraints. The chip can execute 363 MOPS with a maximum power consumption of 1.9 mW, for an efficiency of 190 GOPS/W. The system performance was tested in a coincidence measurement setup interfacing Smarty with two groups of five 4 mm x 4 mm analog silicon photomultipliers (A-SiPMs) used as inputs for the TDCs. The ANN successfully distinguished between six different positions of a radioactive source placed between the two photodetector arrays by solely using the TDC timestamps.Comment: 13 pages, 24 Figure

    Hardware Implementation of a Digital Watermarking System for Video Authentication

    Full text link

    WAO International Scientific Conference (WISC 2016) Abstracts

    No full text
    corecore